
Implement of Code Timeout Detection System Based on Tree-LSTM

Shao Mingyuan(Informatics)23320221154299, Zhang Haoran(AI)36920221153147, Yan
Fei(Informatics)23320221154304, Qi Pengyu(Informatics)23020221154105, Lin

Hong(Informatics)23320221154296
1School of Informatics

Xiamen University
Xiamen, China

Abstract

Codeforces is an online evaluation website for program-
ming competitions. There are many results on this web-
site: AC (Accepted), WA (Wrong answer),RE(Runtime er-
ror),CE(Compilation error) and TLE (Time limit exceeded)
and so on. Among them, the time required for TLE is rela-
tively long, which is easy to reduce the operating efficiency
of the website. In this project, the source codes of AC and
TLE are mainly involved.
The main purpose of this project is to design a self-developed
classification model based on whether the source code col-
lected from the program competition website Codeforces will
predict the time limit exceed of the code without running the
test case, and then implement the entire code time limit ex-
ceed exception detection system. The system includes the fol-
lowing:
(1) The pyppeteer headless browser was used to crawl 54848
codes from 1,513 program competitions on Codeforces, in-
cluding 27424 AC and 27424 TLE code pairs, achieving bal-
anced distribution of training samples.
(2) Parse the crawled code into AST (Abstract Syntax Tree),
and extract the syntax dependency tree from AST based on
the node name of AST. Then use one-hot vectors to achieve
vectorized representation of grammatical relational depen-
dency trees.
(3) The model is built with the Dependency-TreeLSTM[1] as
the classifier and the prediction results are analyzed and stud-
ied. The final results show that the system can save 94% of
the running time when the recall rate reaches 78%, the F1
score reaches 74% and the accuracy rate reaches 73%.

Introduction
With the rapid development of information society and com-
puter technology, the program design course is becoming
one of the required courses for students of various majors.
And the improvement and practice of programming ability
need a lot of programming practice, so it needs a lot of prob-
lems of appropriate difficulty and timely information feed-
back. It is time-consuming and laborious for teachers to cor-
rect by themselves, and the reliability of evaluation results
is not stable. Therefore, a series of websites based on source
code automatic assessment system have emerged as auxil-
iary teaching resources for such courses.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Usually, the main indicator of software quality is function-
ality. However, today’s software users are not only satisfied
with correctness, performance and user experience increas-
ingly become the factors affecting user selection and loyalty.
Performance errors are defined as software defects that do
not affect functionality but can significantly increase oper-
ating efficiency when improved. As the maturity of system
functional testing increases, system problems are usually re-
lated to system functional performance, and the problems
related to system performance defects require more time to
fix than the functional errors. The detection and optimization
of performance defects depends more on the developer’s ex-
perience. Different programmers may write completely dif-
ferent ”correct” code for the same problem, and its execu-
tion efficiency may be completely different due to the differ-
ent organization/structure of the code. This problem is es-
pecially acute for novice programmers. For example, on the
program competition site codeforce, students solve the same
problem by submitting their own code. A commit is marked
Accept(AC) only if the code runs successfully through all
test cases in the time and memory indicated in the prob-
lem statement. Through the analysis of historical data, it is
found that 5% of code submissions lead to timeout, named
TLE, and the program is considered to have performance de-
fects(Zhou et al. 2019).
In the automatic source code evaluation system, it is neces-
sary to set a large number of test cases to detect whether the
code has performance defects. In order to reduce the load of
the system, we propose a code timeout anomaly detection
system based on Tree-LSTM(Tai K S,Socher R,CD Man-
ning 2015), hoping to realize the prediction of code timeout
before the code runs.

Related work
In the information era, computer is becoming more and more
important to the composition of human society. And soft-
ware in the computer composition has a pivotal position.
Therefore, in recent years, the representation and analysis
of program code with deep learning has become the focus in
the field of code performance analysis.
Tree-LSTM. Tree-LSTM is an improved algorithm based
on LSTM proposed by Kai Sheng Tai et al., which is a tree-
based algorithm. In LSTM(Hochreiter S and Schmidhuber
J 2019), the model is input strictly according to a fixed in-



put sequence, that is, a sequence of words from beginning
to end. The idea of tree-LSTM is mainly to build a tree
based on syntactic analysis, grammar analysis and other op-
erations, and then input each word into different nodes ac-
cording to the relationship between words. According to the
author’s experiment, this method is better than the traditional
LSTM.
Code Embedding. With the development of deep learn-
ing and Natural Language Processing (NLP), program as a
kind of natural language has also been included in the scope
of research. Various program representation learning mod-
els have been proposed to understand the semantic proper-
ties of programs for code embedding and application to dif-
ferent software engineering tasks. The availability of large
amounts of source code from public repositories has also
driven the use of deep learning techniques for code embed-
ding learning(Han S et al. 2021) over the past few years. Ah-
mad(Ahmad W U et al. 2020) learned code embeddings by
modeling pairwise relationships between code tokens to cap-
ture their long-term dependencies. Rabinovich(Rabinovich
M, Stern M and Klein D 2017) used ADSL (Abstract Syn-
tax Description Language) syntax tree and neural network to
achieve code generation.
Deep Learning Based Code Performance Research. Deep
learning has made significant breakthroughs in various fields
of artificial intelligence. The advantages of deep learning in-
clude the ability to capture highly complex features, weak
involvement of human engineering, etc. Mou(Peng H et al.
2015)proposed a ”coding standard” for constructing pro-
gram vector representations to qualitatively and quantita-
tively evaluate the learned vector representations. Based on
their experimental results, it is shown that the coding stan-
dard is successful in constructing program representations,
and the results also confirm the feasibility of deep learning
to analyze programs. Many other similar papers (Lu H, Cu-
kic B and Culp M et al. 2012)(Gupta R et al. 2017)(Jin G
et al. 2012)(Tsakiltsidis S, Miranskyy A, Mazzawi E et al.
2016)(Hellendoorn V J and Devanbu P 2017) also suggest
that deep learning will become a prominent method for pro-
gram analysis in the near future.
In the field of code classification, Zhou et al. proposed to use
the deep learning model to extract code features from the
code sequence and the control flow graph of the code and
predict whether it is timeout for classification. Mou(Mou et
al. 2014) et al proposed the TBCNN model, which uses the
idea of CNN (Convolutional Neural Networks) to extract the
features of the abstract syntax tree of the code in the way of
simulating images and uses this to carry out the next classi-
fication task.

Proposed solution
The compiler often runs the code based on the lowest level
abstract syntax tree. Categorizing the test result of the code
samples. Accept samples correspond to 0 and TLE samples
correspond to 1. Because of the tree nature, We use the ab-
stract syntax tree to abstract the code into a syntax depen-
dency tree, and then use TreeLSTM to extract its features
and send them to the classifier. Specific methods are as fol-
lows:

Framework Overview
The goal of this paper is to automatically divide a source
code into two categories before running on the code test
case: whether it exceeds the time limit, which can be used
to help the online evaluation system to save testing work-
load. We regard the defect prediction of TLE problem as
the learning task of building the prediction function f: X →
Y,where yi ∈ Y={0,1} indicates whether a code xi ∈ X will
lead to exceeding the time limit (yi=1) or passing all test
cases within the time limit (yi=0). Code is not only raw text
data, but also structured data. Therefore, in our model, the
prediction function f can be learned by neural network clas-
sifier based on the learned code features converted from the
abstract syntax tree of the code. Then we input the learned
vector into the network classifier, and finally get the classifi-
cation results.

Figure 1: the framework of our method

Abstract Syntax Tree
The program analysis based on deep learning needs to con-
sider how to vectorize the code. Now, the granularity com-
monly used in program code analysis is mostly at the token
level, but there is a serious problem that programmers can
name identifiers in source code by themselves, so the num-
ber of tokens will be very large, and we will also be trou-



bled by the problem of sparse data. In the abstract syntax
tree, the relationship between program codes can be clearly
expressed in a more compressed form, and there are only
a limited number of types of nodes in the abstract syntax
tree, which makes learning feasible. The abstract syntax tree
can also represent the syntax structure of the source code
more intuitively, containing all the static information of the
source code structure, and it is convenient to store. There-
fore, we use the abstract syntax tree to express the syntax
dependency tree of the code.
Since the names of nodes behind the syntax dependency tree
only include 103 types, that is, there are only 103 types left.
The dimensions after we use the unique heat vector to vec-
torize are not high, and the matrix is not too sparse.

Figure 2: Syntax dependency tree converted by AST

Tree-LSTM
Tree-LSTM (Tree Structured Long Short Term Memory
Networks is a LSTM structure published in 2015. Natural
languages such as code do not Only the linear sequence re-
lationship features, and the characteristics of grammar and
syntax should be taken into account. The standard LSTM
contains input gates and output gates, memory cells and hid-
den states. The difference between the standard LSTM and
Tree LSTM is that the update of the gate vector and mem-
ory cell vector is based on multiple subunits. The former
only needs to filter information from the previous moment,
while the latter needs to filter information from multiple
child nodes. Therefore, the Tree LSTM proposed in this pa-
per can more easily combine dependency, phrase formation
and other grammatical features, making semantic expression
more accurate.
The author proposes two kinds of Tree LSTM structures:
Child Sum Tree LSTM and N-ary Tree LSTM.This paper
adopts Child Sum Tree LSTM based on dependency tree.
Take Tree LSTM module unit composed of two children as
an example. With j as the index, each Tree LSTM unit, like
the standard LSTM unit, contains input and output gates ij
and oj , storage unit cj , and hidden state hj . The special fea-
ture of Tree LSTM unit is that the output state of sub unit
can better determine the update of gating vector and mem-
ory unit state. In addition, Tree LSTM unit is not a single
forgetting door, but contains a forgetting door fjk for each
child. This allows the hidden state of the parent node of the
Tree LSTM unit to obtain and filter the information trans-
mitted from each child node, so it can learn to retain the
representation of children with rich syntax information for
code classification.
On the input module of the cell, Tree LSTM is the same

Figure 3: Module unit of Tree-LSTM

as the standard LSTM. Each Tree LSTM cell has an input
vector xj . In language processing, each xj is the vectorized
representation of each word in the sentence. In this paper,
the input of xj is the unique hot vector converted from the
node type name in the syntax dependency tree. C(j) repre-
sents the calculation formula of the sub node set of node j as
follows:

h̃ = Σk∈C(j)hk (1)

ij = σ(W (i)xj + U (i)h̃j + b(i)) (2)

fjk = σ(W (f)xj + U (f)h̃k + b(f)) (3)

oj = σ(W (o)xj + U (o)h̃j + b(o)) (4)

uj = tanh(W (u)xj + U (u)h̃j + b(u)) (5)

cj = ij ⊙ uj +ΣK∈C(j)fik ⊙ Cj (6)

hj = oj ⊙ tanh cj (7)
where k∈ C(j).
Since all cell parameters are 128 dimensions, we need to
expand the input 103 dimensions to 128 dimensions before
entering the model. The expansion formula is as follows:

x = xAT + b (8)

Where the dimension of transpose matrix of A is [103,128].
In the classifier part, we want to predict the label ŷ of a node
subset in the tree from two discrete classes Y ∈ {0, 1}.
The label of the node in the tree obtained by the classifier in
the process of parsing the tree may correspond to some static
attribute characteristics of the code that the node spans. After
generating the overall hidden state h̃ of the whole tree, the h̃
is sent to the hidden layer, activated by the sigmoid function,
and finally passed through the log softmax function gener-
ates the final two-dimensional result, and takes the larger
one as the prediction tag result. The calculation formula is
as follows:

outθ = σ(W (θ)h̃θB
T + b(i)) (9)

p̂θ = log softmax(W (θ)outθC
T + b(θ)) (10)

ŷθ = argmaxp̂θ(y|{0, 1}) (11)



The loss function of the network is a binary cross entropy
loss function. This loss function is often used to solve the
binary classification problem, so we use it to measure the
loss between the prediction result and the real sample result
y. The formula of the binary cross entropy loss function is
as follows:

L(θ) = −((yθ log ŷθ) + (1− yθ) log(1− ŷθ)) (12)

Finally, the value of the loss function is calculated by
feedback, and the weight W is automatically adjusted by the
gradient descent algorithm. Each code in each epoch par-
ticipates in calculating the gradient until the optimal solu-
tion parameters for the current epoch are determined and the
trained model is stored.

Experiments
Dataset
We test the efficacy of our proposed method on our own
datasets, we call it CFDataset, which contains more than 54k
labeled codes including 2 categories(AC, TLE) for training
and testing. All of them are crawled from Codeforces.

Dataset

Contest 1513
Problem 3323

Total programs 54848
TLE programs 27424
AC programs 27424
Max nodes 5617
Min nodes 6
Avg nodes 148.6

Avg Runtime 959.83(ms)

Table 1:Dataset description

Data preprocessing
The data preprocessing consists of three main parts: anal-
ysis, conversion and normalization operations. We use
Python’s AST package to parse the code.Because the various
attributes of the abstract syntax tree class are too complex,
we only reserve the node name as the semantic attribute of
the abstract syntax tree, which becomes the syntax depen-
dency tree.Since the traversal function of the parsed syntax
dependency tree is traversed by the Breath first search (BFS)
method to obtain child nodes, we use the structure of the
queue and mark the serial number of each node. First, we
transform the Breath first search traversal into a sequence
traversal and mark the serial number of the parent node for
each node, and then obtain the information of each node in
order, so that it can be converted into the input form required
by Tree LSTM.

Dataset protocol
We randomly sampled 25% or 50% programes for the train-
ing set, and the rest of the 50% samples was used for valida-
tion.

Evaluation Protocol
In order to evaluate the prediction results, this paper
uses the accuracy, precision, recall and F1 score that are
widely used in other papers(Tsakiltsidis S, Miranskyy
A and Mazzawi E 2019)(Mou L et al. 2014)(Sandoval
Alcocer J P, Bergel A and Valente M T 2016)(Yang X et
al. 2015)(Wang S, Liu T and Tan L 2016)in the secondary
classification task as the evaluation indicators of experiment.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 =
2PR

P +R
=

2TP

2TP + FP + FN
(16)

Implementation Details
We select a few of the more important hyper-parameters
shown in Table 2.

Hyperparameter Value

Hidden layers 1
Hidden dimension 64

Learning rate 0.01
Batch size 32

Weight decay 0.0001
Optimizer adagrad

Table 2:Hyperparameter

Result
This section will introduce the experimental results. We ran
the model on a NVIDIA GeForce RTX 2070 super, each
experiment trained for 10 epochs. There are two cases to
explore whether the size of training set will affect the effect
of model training.Table 3 shows the comparison result. It
can be seen that this model can achieve the same effect
as the large sample training by using a small number of
samples to train the model.

Module Accuracy Precision Recall F1 Score

TreeLSTM-25% 0.702 0.688 0.778 0.730
TreeLSTM-50% 0.718 0.691 0.788 0.737

Table 3:Training effect of 10 epochs with different propor-
tion training sets

Due to the limitation of training equipment, this paper
can only compare the three models roughly. The epoch
of each model training is set to 10, and the learning rate
is set to 0.01 to expect faster convergence. The data set
is 54848 codes extracted in this paper. The training set is
25% of the dataset,including 6856 TLE codes and 6856
AC codes, totaling 13712 codes; The testing set was in
the rest of dataset. It mainly compares the advantages and



disadvantages of the prediction of the model and the time
spent.

Module Accuracy Recall F1 Score

Tree-LSTM 0.70 0.78 0.73
Att-Bi-LSTM 0.65 0.73 0.68

Table 4:Comparison results of different modules

Module Avg Runtime(ms)

Avg Runtime 959.83
Tree-LSTM 75

Att-Bi-LSTM 56

Table 5:Module Avg Runtime
Our model finally saved 92% of running time on the premise
of having nice prediction results.

Conclusion
From the results of the above two models, it can be seen that
the accuracy of Tree-LSTM model will be higher, but the
prediction time will be about 30% slower than that of Att-
Bi-LSTM model. This may be because Tree-LSTM model
is much larger than the linear LSTM model. But compared
with the original running time, it is still a very novel result.
In this paper, we propose an interesting method to predict
whether the code runs overtime. By introducing abstract
syntax trees and Tree LSTM, we can focus on the static syn-
tax features at the bottom of the code to extract features that
are not available in the linear model. We demonstrated the
effectiveness of our model design and achieves satisfactory
performance.In this experiment, we explored code embed-
ding and feature extraction, which is a direction worthy of
research.



References
Zhou, M. , Chen, J. , Hu, H. , Yu, J. , & Hu, H. . (2019).
DeepTLE: Learning Code-Level Features to Predict Code
Performance before It Runs. 2019 26th Asia-Pacific Soft-
ware Engineering Conference (APSEC). IEEE.
Tai K S , Socher R , CD Manning. Improved Semantic Rep-
resentations From Tree-Structured Long Short-Term Mem-
ory Networks[J]. Computer Science, 2015, 5(1): 36.
Hochreiter S, Schmidhuber J. Long short-term memory[J].
Neural computation, 1997, 9(8): 1735-1780.
Han S, Wang D X, Li W, et al. A Comparison of Code Em-
beddings and Beyond[J]. arXiv preprint arXiv:2109.07173,
2021.
Ahmad W U, Chakraborty S, Ray B, et al. A transformer-
based approach for source code summarization[J]. arXiv
preprint arXiv:2005.00653, 2020.
Rabinovich M, Stern M, Klein D. Abstract syntax networks
for code generation and semantic parsing[J]. arXiv preprint
arXiv:1704.07535, 2017.
Peng H, Mou L, Li G, et al. Building program vector repre-
sentations for deep learning[C]International conference on
knowledge science, engineering and management. Springer,
Cham, 2015: 547-553.
Lu H, Cukic B, Culp M. Software defect prediction using
semi-supervised learning with dimension reduction[C]2012
Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering. IEEE, 2012: 314-
317. Gupta R, Pal S, Kanade A, et al. Deepfix: Fixing
common c language errors by deep learning[C]Thirty-First
AAAI Conference on Artificial Intelligence. 2017.
Jin G, Song L, Shi X, et al. Understanding and detecting
real-world performance bugs[J]. ACM SIGPLAN Notices,
2012, 47(6): 77-88.
Tsakiltsidis S, Miranskyy A, Mazzawi E. On automatic
detection of performance bugs[C]2016 IEEE international
symposium on software reliability engineering workshops
(ISSREW). IEEE, 2016: 132-139.
Hellendoorn V J, Devanbu P. Are deep neural networks the
best choice for modeling source code?[C]Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engi-
neering. 2017: 763-773.
Mou L, Li G, Jin Z, et al. TBCNN: A Tree-Based Convo-
lutional Neural Network for Programming Language Pro-
cessing. CoRR abs/1409.5718 (2014)[J]. arXiv preprint
arXiv:1409.5718, 2014.
Tsakiltsidis S, Miranskyy A, Mazzawi E. On automatic
detection of performance bugs[C]2016 IEEE international
symposium on software reliability engineering workshops
(ISSREW). IEEE, 2016: 132-139.
Mou L, Li G, Jin Z, et al. TBCNN: A Tree-Based Convo-
lutional Neural Network for Programming Language Pro-
cessing. CoRR abs/1409.5718 (2014)[J]. arXiv preprint
arXiv:1409.5718, 2014.
Sandoval Alcocer J P, Bergel A, Valente M T. Learn-
ing from source code history to identify performance fail-
ures[C]Proceedings of the 7th ACM/SPEC on International
Conference on Performance Engineering. 2016: 37-48.
Yang X, Lo D, Xia X, et al. Deep learning for just-in-time
defect prediction[C]2015 IEEE International Conference on

Software Quality, Reliability and Security. IEEE, 2015: 17-
26.
Wang S, Liu T, Tan L. Automatically learning semantic fea-
tures for defect prediction[C]2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE). IEEE,
2016: 297-308.


